Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell J ; 26(3): 169-184, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38628090

RESUMO

Infertility is a common clinical condition and about half of the major causes are due to male-related infertility. Pathogenesis of this abnormality is generally undefined; so establishing a proper treatment option is relatively uncertain. In recent years, several evidences demonstrated that mesenchymal stem cells (MSCs) can be a hope for innovative and efficient treatment of male infertility. This study reviews possible applications of MSCs in the restoration of spermatogenesis in male infertility of both humans and animals to suggest new avenues for future clinical practices. Articles published in "PubMed" and "Google Scholar" from January 1, 2000, to August 1, 2023, were investigated by searching items of "mesenchymal stem cells", "cell therapy", "cell transplantation", and, "regenerative medicine" keywords, in addition to the "urology", "andrology", "reproductive medicine", "male infertility", "azoospermia", and "spermatogenesis". The results obtained from the transplantation of MSCs in the treatment of male infertility seemed encouraging and they revealed the safety and efficacy of these cells to recover spermatogenesis; eventhough further stem cell research is still required before recruiting clinical application of MSCs in the treatment of human male infertility. Undertaking more well-defined, standardized, and reproducible protocols and enrolling larger sample sizes during a longer follow-up period can benefit the relevance of MSC transplantation in the restoration of spermatogenesis and treatment of male infertility. It seems that developing and utilizing stem cell transplantations, exosomes, scaffold delivery systems, and three dimensional (3D) culture methods may open a new window to getting more benefits from cell therapy in the treatment of men infertility.

2.
Virol J ; 21(1): 37, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38317249

RESUMO

BACKGROUND: To stop the spread of the COVID-19 disease, it is crucial to create molecular tools to investigate and diagnose COVID-19. Current efforts focus on developing specific neutralizing monoclonal antibodies (NmAbs) elicited against the receptor-binding domain (RBD). METHODS: In the present study, recombinant RBD (rRBD) protein was produced in E. coli, followed by immunizing mice with purified rRBD. ELISA was applied to screen the hybridomas for positive reactivity with rRBD protein. The linear and conformational epitopes of the mAbs were subsequently identified using western blot. Finally, the reactivity, affinity, and neutralization activity of the purified mAbs were evaluated using ELISA. RESULTS: All mAbs exhibited similar reactivity trends towards both eukaryotic RBD and prokaryotic rRBD in ELISA. Among them, 2E7-D2 and 2B4-G8 mAbs demonstrated higher reactivity than other mAbs. Additionally, in western blot assays, these two mAbs could detect reducing and non-reducing rRBD, indicating recognition of linear epitopes. Notably, five mAbs effectively blocked rRBD- angiotensin-converting enzyme 2 (ACE2) interaction, while two high-affinity mAbs exhibited potent neutralizing activity against eukaryotic RBD. CONCLUSION: In the current study, we generated and characterized new RBD-specific mAbs using the hybridoma technique that recognized linear and conformational epitopes in RBD with neutralization potency. Our mAbs are novel candidates for diagnosing and treating SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Epitopos , Anticorpos Antivirais , Escherichia coli/metabolismo , COVID-19/diagnóstico , Anticorpos Neutralizantes , Anticorpos Monoclonais , Glicoproteína da Espícula de Coronavírus/química
3.
J Clin Med ; 12(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36983399

RESUMO

To assess in vitro and in vivo tracking of iron oxide labeled stem cells transfected by lipofectamine using magnetic resonance imaging (MRI), rat dental pulp stem cells (DPSCs) were characterized, labeled with iron oxide nanoparticles, and then transfected with lipofectamine to facilitate the internalization of these nanoparticles. Cell proliferation, viability, differentiation, and apoptosis were investigated. Prussian blue staining and MRI were used to trace transfected labeled cells. DPSCs were a morphologically spindle shape, adherent to culture plates, and positive for adipogenic and osteogenic inductions. They expressed CD73 and CD90 markers and lacked CD34 and CD45. Iron oxide labeling and transfection with lipofectamine in DPSCs had no toxic impact on viability, proliferation, and differentiation, and did not induce any apoptosis. In vitro and in vivo internalization of iron oxide nanoparticles within DPSCs were confirmed by Prussian blue staining and MRI tracking. Prussian blue staining and MRI tracking in the absence of any toxic effects on cell viability, proliferation, differentiation, and apoptosis were safe and accurate to track DPSCs labeled with iron oxide and transfected with lipofectamine. MRI can be a useful imaging modality when treatment outcome is targeted.

4.
J Cancer Res Clin Oncol ; 149(7): 4101-4116, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36040667

RESUMO

BACKGROUND: Cancer stem cells (CSCs), a rare sub-fraction of tumor cells, with the capability of self-renewal and strong oncogenicity are tightly responsible for chemo and radio resistance and tumor metastasis in colorectal cancer. Hence, CSCs targeting would improve the efficacy of therapeutic strategies and clinical outcomes. METHODS: Here, using three-dimensional CSC spheroids and syngeneic mice model, we evaluated the cancer preventive impact of CSCs-based vaccination. CSCs enrichment was performed via colonosphere formation from CT-26 cell line and CT-26-derived tumor biopsy and characterized by confirming high expression of key stemness genes (OCT4, SOX2, and NANOG) and CSC-related surface biomarkers (CD166, DCLK1, and CD133) via real-time PCR and flow cytometry, respectively. Then, the stemness phenotype and self-renewal in CSC-enriched spheroids were further confirmed by showing serial sphere formation capacity, clonogenicity potential, and enhanced in vivo tumorigenic capacity compared to their parental counterparts. CSCs lysates were used as vaccines in prophylactic settings compared to the parental cell lysate and PBS groups. RESULT: Immunization of syngeneic mice with CSCs lysates was effective in the prevention of tumor establishment and significantly decreased tumor growth rate accompanied by an improvement in survival rate in tumor-bearing mice compared to groups subjected to parental cells lysate and PBS. These results, for the first time, showed that mice immunized with cell lysate from tumor biopsy-derived spheroids are resistant to tumor induction. Immunofluorescence staining indicated that only the serum antibodies from CSC-vaccinated mice reacted with colonospheres. CONCLUSIONS: These findings represent CSCs lysate-based vaccination as a potential approach to hampering immunotherapy failure of colorectal cancer which along with other traditional therapies may effectively apply to prevent the establishment of aggressive tumors harboring stemness features.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Camundongos , Animais , Neoplasias do Colo/metabolismo , Linhagem Celular Tumoral , Adenocarcinoma/patologia , Modelos Animais de Doenças , Células-Tronco Neoplásicas/metabolismo , Vacinação , Proliferação de Células
5.
Burns Trauma ; 10: tkac018, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36380853

RESUMO

Background: In vivo cell tracking after transplantation in regenerative medicine remains an unmet challenge and limits current understanding of the wound healing mechanism through cell-based therapies. This study investigated tracking of human Wharton's jelly stem cells (hWJSCs) seeded onto an acellular dermal matrix (ADM) and labeled with superparamagnetic iron oxide nanoparticles (SPIONs) by magnetic resonance imaging (MRI) in burn injury. Method: The hWJSCs were characterized and assessed for growth kinetics. A total of 30 rats were enrolled in three equal groups. Group 1 underwent scald burn injury left without treatment, the group 2 was treated by an ADM that was prepared from cosmetic surgery skin samples and the group 3 received hWJSCs labeled with SPIONs seeded onto an ADM. Tensile strength was evaluated before and after interventions, real time PCR assessed apoptosis, and Prussian blue staining, scanning electron microscopy (SEM) and MRI were used for the tracking of labeled cells. Results: The hWJSCs exhibited mesenchymal stem cell properties. Population doubling time was 40.1 hours. SPIONs did not show any toxic effect. The hWJSCs seeded onto an ADM decreased Bax and increased Bcl-2 gene expression. Internalization of SPIONs within hWJSCs was confirmed by Prussian blue staining, SEM and MRI until day 21. There was a significant difference between the Young's moduli of normal skin and the group receiving hWJSCs seeded onto an ADM. Histological observations and SEM imaging confirmed that MRI is an accurate method to track SPION-labeled hWJSCs in vivo. Conclusions: This study showed that SPION labeling coupled with MRI can be used to further understand the fate of stem cells after transplantation in a burn model.

6.
Front Oncol ; 12: 819172, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372043

RESUMO

Inhibition of DNA repair enzymes is an attractive target for increasing the efficacy of DNA damaging chemotherapies. The ERCC1-XPF heterodimer is a key endonuclease in numerous single and double strand break repair processes, and inhibition of the heterodimerization has previously been shown to sensitize cancer cells to DNA damage. In this work, the previously reported ERCC1-XPF inhibitor 4 was used as the starting point for an in silico study of further modifications of the piperazine side-chain. A selection of the best scoring hits from the in silico screen were synthesized using a late stage functionalization strategy which should allow for further iterations of this class of inhibitors to be readily synthesized. Of the synthesized compounds, compound 6 performed the best in the in vitro fluorescence based endonuclease assay. The success of compound 6 in inhibiting ERCC1-XPF endonuclease activity in vitro translated well to cell-based assays investigating the inhibition of nucleotide excision repair and disruption of heterodimerization. Subsequently compound 6 was shown to sensitize HCT-116 cancer cells to treatment with UVC, cyclophosphamide, and ionizing radiation. This work serves as an important step towards the synergistic use of DNA repair inhibitors with chemotherapeutic drugs.

7.
Life Sci ; 295: 120380, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35143825

RESUMO

AIMS: the main purpose of this study was to identify new selective antitumor agents. MAIN METHODS: several hydrazonoyl chlorides (HCs) were synthesized and human tumor cell line viability was determined using the MTT assay. Tumor development was assessed using Ehrlich ascites carcinoma (EAC)-bearing mice. KEY FINDINGS: our results showed that 2-oxo-N-phenyl-2-(phenylamino)acetohydrazonoyl chloride (compound 4; CPD 4) and 2-oxo-2-(phenylamino)-N-(p-tolyl)acetohydrazonoyl chloride (CPD 5) were the most cytotoxic HCs to human cervical tumor HeLa (IC50: 20 and 25 µM for CPD 4 and 5 respectively), breast MCF7 (IC50: 29 and 34 µM for CPD 4 and 5 respectively) and colon HCT116 cancer cells (IC50: 26 and 25 µM for CPD 4 and 5 respectively) with the least cytotoxicity to human non-tumor CCD-18Co colon fibroblasts as well as murine splenocytes. The active compounds significantly inhibited colony formation as well as tumor development in EAC-bearing mice. We also observed that PTEN-deficient cells displayed greater sensitivity than cells expressing wild type PTEN. At the molecular level, comet and cell cycle analyses indicated that the active compounds generate DNA damage. In light of the PTEN-dependent sensitivity and genomic instability we examined the influence of HCs on the DNA repair enzyme polynucleotide kinase/phosphatase (PNKP) and the PI3K/AKT/mTOR pathway, which are each known to be synthetic lethal with PTEN. We found that both PNKP and the PI3K/AKT/mTOR pathway to be adversely affected by the HCs, which may partially account for their toxicity. SIGNIFICANCE: hydrazonoyl chlorides can be considered as hit compounds for the development of new antitumor agents.


Assuntos
Antineoplásicos/síntese química , Hidrazonas/síntese química , Hidrazonas/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cloretos/química , Cloretos/farmacologia , Enzimas Reparadoras do DNA/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Humanos , Hidrazonas/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
8.
J Clin Med ; 10(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209041

RESUMO

Otorhinolaryngology enrolls head and neck surgery in various tissues such as ear, nose, and throat (ENT) that govern different activities such as hearing, breathing, smelling, production of vocal sounds, the balance, deglutition, facial animation, air filtration and humidification, and articulation during speech, while absence of these functions can lead to high morbidity and even mortality. Conventional therapies for head and neck damaged tissues include grafts, transplants, and artificial materials, but grafts have limited availability and cause morbidity in the donor site. To improve these limitations, regenerative medicine, as a novel and rapidly growing field, has opened a new therapeutic window in otorhinolaryngology by using cell transplantation to target the healing and replacement of injured tissues. There is a high risk of rejection and tumor formation for transplantation of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs); mesenchymal stem cells (MSCs) lack these drawbacks. They have easy expansion and antiapoptotic properties with a wide range of healing and aesthetic functions that make them a novel candidate in otorhinolaryngology for craniofacial defects and diseases and hold immense promise for bone tissue healing; even the tissue sources and types of MSCs, the method of cell introduction and their preparation quality can influence the final outcome in the injured tissue. In this review, we demonstrated the anti-inflammatory and immunomodulatory properties of MSCs, from different sources, to be safely used for cell-based therapies in otorhinolaryngology, while their achievements and challenges have been described too.

9.
J Control Release ; 334: 335-352, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33933518

RESUMO

Phosphatase and TENsin homolog deleted on chromosome 10 (PTEN) is a major tumor-suppressor protein that is lost in up to 75% of aggressive colorectal cancers (CRC). The co-depletion of PTEN and a DNA repair protein, polynucleotide kinase 3'-phosphatase (PNKP), has been shown to lead to synthetic lethality in several cancer types including CRC. This finding inspired the development of novel PNKP inhibitors as potential new drugs against PTEN-deficient CRC. Here, we report on the in vitro and in vivo evaluation of a nano-encapsulated potent, but poorly water-soluble lead PNKP inhibitor, A83B4C63, as a new targeted therapeutic for PTEN-deficient CRC. Our data confirmed the binding of A83B4C63, as free or nanoparticle (NP) formulation, to intracellular PNKP using the cellular thermal shift assay (CETSA), in vitro and in vivo. Dose escalating toxicity studies in healthy CD-1 mice, based on measurement of animal weight changes and biochemical blood analysis, revealed the safety of both free and nano-encapsulated A83B4C63, at assessed doses of ≤50 mg/kg. Nano-carriers of A83B4C63 effectively inhibited the growth of HCT116/PTEN-/- xenografts in NIH-III nude mice following intravenous (IV) administration, but not that of wild-type HCT116/PTEN+/+ xenografts. This was in contrast to IV administration of A83B4C63 solubilized with the aid of Cremophor EL: Ethanol (CE), which led to similar tumor growth to that of formulation excipients (NP or CE without drug) or 5% dextrose. This observation was attributed to the higher levels of A83B4C63 delivered to tumor tissue by its NP formulation. Our data provide evidence for the success of NPs of A83B4C63, as novel synthetically lethal nano-therapeutics in the treatment of PTEN-deficient CRC. This research also highlights the potential of successful application of nanomedicine in the drug development process.


Assuntos
Neoplasias Colorretais , Polinucleotídeo 5'-Hidroxiquinase , Animais , Neoplasias Colorretais/tratamento farmacológico , Camundongos , Camundongos Nus , Nanomedicina , PTEN Fosfo-Hidrolase/deficiência , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores
10.
Cancer Cell Int ; 21(1): 204, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849536

RESUMO

BACKGROUND: Relapse and metastasis in colorectal cancer (CRC) are often attributed to cancer stem-like cells (CSCs), as small sub-population of tumor cells with ability of drug resistance. Accordingly, development of appropriate models to investigate CSCs biology and establishment of effective therapeutic strategies is warranted. Hence, we aimed to assess the capability of two widely used and important colorectal cancer cell lines, HT-29 and Caco-2, in generating spheroids and their detailed morphological and molecular characteristics. METHODS: CRC spheroids were developed using hanging drop and forced floating in serum-free and non-attachment conditions and their morphological features were evaluated by scanning electron microscopy (SEM). Then, the potential of CSCs enrichment in spheroids was compared to their adherent counterparts by analysis of serial sphere formation capacity, real-time PCR of key stemness genes (KLF4, OCT4, SOX2, NANOG, C-MYC) and the expression of potential CRC-CSCs surface markers (CD166, CD44, and CD133) by flow cytometry. Finally, the expression level of some EMT-related (Vimentin, SNAIL1, TWIST1, N-cadherin, E-cadherin, ZEB1) and multi-drug resistant (ABCB1, ABCC1, ABCG2) genes was evaluated. RESULTS: Although with different morphological features, both cell lines were formed CSCs-enriched spheroids, indicated by ability to serial sphere formation, significant up-regulation of stemness genes, SOX2, C-MYC, NANOG and OCT4 in HT-29 and SOX2, C-MYC and KLF4 in Caco-2 spheroids (p-value < 0.05) and increased expression of CRC-CSC markers compared to parental cells (p-value < 0.05). Additionally, HT-29 spheroids exhibited a significant higher expression of both ABCB1 and ABCG2 (p-value = 0.02). The significant up-regulation of promoting EMT genes, ZEB1, TWIST1, E-cadherin and SNAIL1 in HT-29 spheroids (p-value = 0.03), SNAIL1 and Vimentin in Caco-2 spheroids (p-value < 0.05) and N-cadherin down-regulation in both spheroids were observed. CONCLUSION: Enrichment of CSC-related features in HT-29 and Caco-2 (for the first time without applying special scaffold/biochemical) spheroids, suggests spheroid culture as robust, reproducible, simple and cost-effective model to imitate the complexity of in vivo tumors including self-renewal, drug resistance and invasion for in vitro research of CRC-CSCs.

11.
World J Plast Surg ; 10(1): 53-59, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33833954

RESUMO

BACKGROUND: Methamphetamine (METH) may be administered for weight loss purposes and to understand the METH side-effects more in details, this study aimed at determining the effect of METH on changes in adipose tissue in experimental rats. METHODS: Forty five male Wistar rats were randomly allocated to three equal groups. Group 1 was experimental receiving METH [0.4 mg/kg, subcutaneously (S/C), 0.6 mL/rat] for 3 weeks, group 2 was the sham group receiving normal saline (0.6 mL/rat, S/C) and the 3rd group was the control receiving distilled water, identically. The elevated plus maze test was used to confirm cognitive impairment and distraction as anxiety and to verify addiction to METH by assessing the percent time spent in open arm (OAT), the percent time spent in closed arm (CAT), the percent time spent in central parts and head dipping over the side of the maze. Adipose tissue was assessed histologically 7, 14 and 21-days after interventions. RESULTS: A significant increase in anxiety level, and histologically inflammation, degeneration and necrosis in adipose tissue were visible after METH use. CONCLUSION: METH use resulted in a significant inflammation and necrosis in adipose tissue denoting to the dangers of METH use, when recreationally targeted for weight loss purposes.

12.
Front Oncol ; 11: 772920, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004293

RESUMO

Inhibition of the DNA repair enzyme polynucleotide kinase/phosphatase (PNKP) increases the sensitivity of cancer cells to DNA damage by ionizing radiation (IR). We have developed a novel inhibitor of PNKP, i.e., A83B4C63, as a potential radio-sensitizer for the treatment of solid tumors. Systemic delivery of A83B4C63, however, may sensitize both cancer and normal cells to DNA damaging therapeutics. Preferential delivery of A83B4C63 to solid tumors by nanoparticles (NP) was proposed to reduce potential side effects of this PNKP inhibitor to normal tissue, particularly when combined with DNA damaging therapies. Here, we investigated the radio-sensitizing activity of A83B4C63 encapsulated in NPs (NP/A83) based on methoxy poly(ethylene oxide)-b-poly(α-benzyl carboxylate-ε-caprolactone) (mPEO-b-PBCL) or solubilized with the aid of Cremophor EL: Ethanol (CE/A83) in human HCT116 colorectal cancer (CRC) models. Levels of γ-H2AX were measured and the biodistribution of CE/A83 and NP/A83 administered intravenously was determined in subcutaneous HCT116 CRC xenografts. The radio-sensitization effect of A83B4C63 was measured following fractionated tumor irradiation using an image-guided Small Animal Radiation Research Platform (SARRP), with 24 h pre-administration of CE/A83 and NP/A83 to Luc+/HCT116 bearing mice. Therapeutic effects were analyzed by monitoring tumor growth and functional imaging using Positron Emission Tomography (PET) and [18F]-fluoro-3'-deoxy-3'-L:-fluorothymidine ([18F]FLT) as a radiotracer for cell proliferation. The results showed an increased persistence of DNA damage in cells treated with a combination of CE/A83 or NP/A83 and IR compared to those only exposed to IR. Significantly higher tumor growth delay in mice treated with a combination of IR and NP/A83 than those treated with IR plus CE/A83 was observed. [18F]FLT PET displayed significant functional changes for tumor proliferation for the drug-loaded NP. This observation was attributed to the higher A83B4C63 levels in the tumors for NP/A83-treated mice compared to those treated with CE/A83. Overall, the results demonstrated a potential for A83B4C63-loaded NP as a novel radio-sensitizer for the treatment of CRC.

13.
J Clin Med ; 9(12)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287220

RESUMO

The worldwide epidemiology of inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), still shows an increasing trend in Asia and Iran. Despite an improvement in the treatment landscape focused on symptomatic control, long-term colectomies have not decreased over the last 10-year period. Thus, novel therapies are urgently needed in clinics to supplement the existing treatments. Mesenchymal stem cells (MSCs) are multipotent adult stem cells with immunosuppressive effects, targeting IBD as a new treatment strategy. They have recently received global attention for their use in cell transplantation due to their easy expansion and wide range of activities to be engrafted, and because they are home to the mucosa of the intestine. Moreover, MSCs are able to differentiate into epithelial and other cells that can directly promote repair in the mucosal damages in UC. It seems that there is a need to deepen our understanding to target MSCs as a promising treatment option for UC patients who are refractory to conventional therapies. Here, we overviewed the therapeutic effects of MSCs in UC and discussed the achievements and challenges in the cell transplantation of UC.

14.
Eur J Med Chem ; 204: 112658, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32738410

RESUMO

The structure-specific ERCC1-XPF endonuclease is essential for repairing bulky DNA lesions and helix distortions induced by UV radiation, which forms cyclobutane pyrimidine dimers (CPDs), or chemicals that crosslink DNA strands such as cyclophosphamide and platinum-based chemotherapeutic agents. Inhibition of the ERCC1-XPF endonuclease activity has been shown to sensitize cancer cells to these chemotherapeutic agents. In this study, we have conducted a structure activity relationship analysis based around the previously identified hit compound, 4-((6-chloro-2-methoxyacridin-9-yl)amino)-2-((4-methylpiperazin1-yl)methyl)phenol (F06), as a reference compound. Three different series of compounds have been rationally designed and successfully synthesized through various modifications on three different sites of F06 based on the corresponding suggestions of the previous pharmacophore model. The in vitro screening results revealed that 2-chloro-9-((3-((4-(2-(dimethylamino)ethyl)piperazin-1-yl)methyl)-4-hydroxyphenyl)amino)acridin-2-ol (B9) has a potent inhibitory effect on the ERCC1-XPF activity (IC50 = 0.49 µM), showing 3-fold improvement in inhibition activity compared to F06. In addition, B9 not only displayed better binding affinity to the ERCC1-XPF complex but also had the capacity to potentiate the cytotoxicity effect of UV radiation and inhibiting the nucleotide excision repair, by the inhibition of removal of CPDs, and cyclophosphamide toxicity to colorectal cancer cells.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/antagonistas & inibidores , Desenho de Fármacos , Endonucleases/antagonistas & inibidores , Linhagem Celular Tumoral , Sistema Livre de Células , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Humanos , Técnicas In Vitro
15.
Chem Biol Drug Des ; 95(4): 460-471, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31891209

RESUMO

The heterodimer of DNA excision repair protein ERCC-1 and DNA repair endonuclease XPF (ERCC1-XPF) is a 5'-3' structure-specific endonuclease essential for the nucleotide excision repair (NER) pathway, and it is also involved in other DNA repair pathways. In cancer cells, ERCC1-XPF plays a central role in repairing DNA damage induced by chemotherapeutics including platinum-based and cross-linking agents; thus, its inhibition is a promising strategy to enhance the effect of these therapies. In this study, we rationally modified the structure of F06, a small molecule inhibitor of the ERCC1-XPF interaction (Molecular Pharmacology, 84, 2013 and 12), to improve its binding to the target. We followed a multi-step computational approach to investigate potential modification sites of F06, rationally design and rank a library of analogues, and identify candidates for chemical synthesis and in vitro testing. Our top compound, B5, showed an improved half-maximum inhibitory concentration (IC50 ) value of 0.49 µM for the inhibition of ERCC1-XPF endonuclease activit, and lays the foundation for further testing and optimization. Also, the computational approach reported here can be used to develop DNA repair inhibitors targeting the ERCC1-XPF complex.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endonucleases/antagonistas & inibidores , Inibidores Enzimáticos/química , Bibliotecas de Moléculas Pequenas/química , Reagentes de Ligações Cruzadas/química , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Desenho de Fármacos , Endonucleases/metabolismo , Inibidores Enzimáticos/metabolismo , Humanos , Simulação de Dinâmica Molecular , Platina/química , Ligação Proteica , Bibliotecas de Moléculas Pequenas/metabolismo , Relação Estrutura-Atividade
16.
J Cell Physiol ; 235(3): 2452-2463, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31578720

RESUMO

The development of efficient and repeatable protocols for biobanking and prolonged storage of cancer stem cells (CSCs), with minimum alterations in biological function, is valuable and desired, particularly for retrospective analysis and clinical applications. In particular, data regarding the effect of cryopreservation on CSCs's functional features is scarce. In this regard, few studies have been shown that 3D spheroid structures, which enriched for CSCs, can keep their biological phenotype and genetic profiles. Here, for the first time, we present data on cryopreservation of CT-26 colonospheres, with the focus on essential stem cell-like properties after thawing. Tumor biopsy-derived colonospheres were frozen in standard freezing media (90% fetal bovine serum + 10% dimethyl sulfoxide) and stored in liquid nitrogen for 10 months. Then, cryopreservation effect on preservation of CSCs-related features was verified using real-time polymerase chain reaction for evaluation of stemness genes and flow cytometry for the putative colorectal CSC surface biomarkers. The self-renewal capacity of thawed spheres was also compared with their fresh counterparts using serial formation assay. Finally, tumorigenic capacity of both groups was evaluated in immunocompetence mouse model. Our data indicated that postthawed colonospheres had high viability without drastic alteration in biological and structural features and maintained self-renewal potential after sequential passages. Real-time analysis showed that both fresh and frozen colonospheres displayed similar expression pattern for key stemness genes: SOX2 and OCT4. Cryopreserved spheroids expressed CD133, CD166, and DCLK1 CSCs surface biomarkers at elevated levels when compared with parental as non-cryopreserved counterparts. Our electron scanning microscopy micrographs clearly demonstrated that postthawed colonospheres retain their integrity and cell surface morphology and characteristics. We also found that both fresh and frozen spheroids were equally tumorigenic. This study represented an effective strategy for reliable storage of intact CT-26 colonospheres; this can provide researchers with a functionally reliable repository of murine colorectal CSCs for their future CSCs projects.


Assuntos
Proliferação de Células/genética , Neoplasias do Colo/metabolismo , Criopreservação/métodos , Esferoides Celulares/metabolismo , Animais , Linhagem Celular Tumoral/metabolismo , Linhagem Celular Tumoral/patologia , Autorrenovação Celular/genética , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Esferoides Celulares/patologia
17.
J Med Chem ; 62(17): 7684-7696, 2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31369707

RESUMO

The ERCC1-XPF heterodimer is a 5'-3' structure-specific endonuclease, which plays an essential role in several DNA repair pathways in mammalian cells. ERCC1-XPF is primarily involved in the repair of chemically induced helix-distorting and bulky DNA lesions, such as cyclobutane pyrimidine dimers (CPDs), and DNA interstrand cross-links. Inhibition of ERCC1-XPF has been shown to potentiate cytotoxicity of platinum-based drugs and cyclophosphamide in cancer cells. In this study, the previously described ERCC1-XPF inhibitor 4-((6-chloro-2-methoxyacridin-9-yl)amino)-2-((4-methylpiperazin-1-yl)methyl)phenol (compound 1) was used as a reference compound. Following the outcome of docking-based virtual screening (VS), we synthesized seven novel derivatives of 1 that were identified in silico as being likely to have high binding affinity for the ERCC1-XPF heterodimerization interface by interacting with the XPF double helix-hairpin-helix (HhH2) domain. Two of the new compounds, 4-((6-chloro-2-methoxyacridin-9-yl)amino)-2-((4-cyclohexylpiperazin-1-yl)methyl)phenol (compound 3) and 4-((6-chloro-2-methoxyacridin-9-yl)amino)-2-((4-(2-(dimethylamino)ethyl) piperazin-1-yl) methyl) phenol (compound 4), were shown to be potent inhibitors of ERCC1-XPF activity in vitro. Compound 4 showed significant inhibition of the removal of CPDs in UV-irradiated cells and the capacity to sensitize colorectal cancer cells to UV radiation and cyclophosphamide.


Assuntos
Reparo do DNA , DNA de Neoplasias/efeitos dos fármacos , Proteínas de Ligação a DNA/antagonistas & inibidores , Endonucleases/antagonistas & inibidores , Pirimidinas/farmacologia , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Desenho de Fármacos , Endonucleases/metabolismo , Células HCT116 , Humanos , Modelos Moleculares , Estrutura Molecular , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
18.
Biomed Rep ; 9(4): 327-332, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30233785

RESUMO

Formation of atherosclerotic plaques is the major cause of coronary artery disease (CAD). Several lines of study have revealed the role of oxidative stress in CAD pathogenesis. In the present study the aim was to investigate the oxidative and antioxidative markers in CAD patients and a control population. The study sample comprised of acute coronary syndrome (ACS) patients, chronic CAD patients and healthy controls (n=30/group). Blood samples of patients and control subjects were collected to measure the concentrations of reduced glutathione (GSH), malondialdehyde (MDA) and the percentage of MDA release as well as the activity of erythrocyte glutathione peroxidase (GPx) and total antioxidant capacity (TAC) of plasma. All parameters were measured by spectrophotometric methods. Additionally, oxidant/antioxidant status was compared between CAD patients with single, double or triple-vessel stenosis and in comparison with controls. The results indicated a significant increase in MDA level and the percentage of MDA release (P<0.05), and a marked decrease in GSH concentration (P<0.0001), TAC (P<0.0001) and the activity of erythrocyte GPx (P<0.0001) in the patient groups compared controls. ACS patients exhibited a similar pattern of data when compared with the chronic CAD group. Similar results were also observed when chronic CAD patients with single, double or triple vessel stenosis and controls were compared. The present study indicates that the acute form of CAD is more susceptible to oxidative damage, suggesting that use of antioxidant therapy may be warranted to ameliorate oxidative stress in this condition.

19.
Adv Exp Med Biol ; 951: 1-12, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27837550

RESUMO

Cryopreservation and biobanking of stem cells are becoming increasingly important as stem cell technology and application attract the interest of industry, academic research, healthcare and patient organisations. Stem cell are already being used in the treatment of some diseases and it is anticipated that stem cell therapy will play a central role in future medicine. Similarly, the discovery of both hematopoietic and solid tumor stem cells and their clinical relevance have profoundly altered paradigms for cancer research as the cancer stem cells are considered promising new targets against cancer. Consequently, long-term cryopreservation and banking of normal and malignant stem cells is crucial and will inevitably become a routine procedure that requires highly regulated and safe methods of specimen storage. There is, however, an increasing amount of evidence showing contradictory results on the impact of cryopreservation and thawing of stem cells, including extensive physical and biological stresses, apoptosis and necrosis, mitochondrial injuries, changes to basal respiration and ATP production, cellular structural damage, telomere shortening and cellular senescence, and DNA damage and oxidative stress. Notably, cell surface proteins that play a major role in stem cell fate and are used as the biomarkers of stem cells are more vulnerable to cold stress than other proteins. There are also data supporting the alteration in some biological features and genetic integrity at the molecular level of the post-thawed stem cells. This article reviews the current and future challenges of cryopreservation of stem cells and stresses the need for further rigorous research on the methodologies for freezing and utilizing cancer stem cells following long-term storage.


Assuntos
Criopreservação/métodos , Crioprotetores/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Antígenos CD/genética , Antígenos CD/metabolismo , Bancos de Espécimes Biológicos , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Expressão Gênica , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Mucina-1/genética , Mucina-1/metabolismo , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Vitrificação
20.
Adv Exp Med Biol ; 864: 1-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26420609

RESUMO

Scientific revolution is changing the world forever. Many new disciplines and fields have emerged with unlimited possibilities and opportunities. Biobanking is one of many that is benefiting from revolutionary milestones in human genome, post-genomic, and computer and bioinformatics discoveries. The storage, management, and analysis of massive clinical and biological data sets cannot be achieved without a global collaboration and networking. At the same time, biobanking is facing many significant challenges that need to be addressed and solved including dealing with an ever increasing complexity of sample storage and retrieval, data management and integration, and establishing common platforms in a global context. The overall picture of the biobanking of the future, however, is promising. Many population-based biobanks have been formed, and more are under development. It is certain that amazing discoveries will emerge from this large-scale method of preserving and accessing human samples. Signs of a healthy collaboration between industry, academy, and government are encouraging.


Assuntos
Bancos de Espécimes Biológicos , Biologia Computacional , Biologia , Comportamento Cooperativo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA